منابع مشابه
Maximum-likelihood Identification of Sampled Gaussian Processes
This work considers sampled data of continuous-domain Gaussian processes. We derive a maximum-likelihood estimator for identifying autoregressive moving average parameters while incorporating the sampling process into the problem formulation. The proposed identification approach introduces exponential models for both the continuous and the sampled processes. We construct a likelihood function f...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملOn the likelihood function of Gaussian max-stable processes
Max-stable processes (de Haan, 1984) have received sustained attention in recent years because of their relevance for studying extreme events in financial, environmental and climate sciences. In a seminal unpublished University of Surrey 1990 technical report, R. L. Smith defined Gaussian max-stable processes, where all margins follow a unit Fréchet distribution, in view of modelling spatial ex...
متن کاملImproved maximum-likelihood detection and estimation of Bernoulli-Gaussian processes
When a wavelet to be estimated is not spiky, then a single most likely replacement (SMLR) detector, which is used to detect randomly located impulsive events that have Gaussian-distributed amplitudes, may split a large spike into two smaller ones and may also detect some spikes at wrong locations, although these locations are very close to their true ones. Presented here are two new detection a...
متن کاملEmpirical Likelihood Approach for Non-Gaussian Locally Stationary Processes
An application of empirical likelihood method to non-Gaussian locally stationary processes is presented. Based on the central limit theorem for locally stationary processes, we calculate the asymptotic distribution of empirical likelihood ratio statistics. It is shown that empirical likelihood method enables us to make inference on various important indices in time series analysis. Furthermore,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1960
ISSN: 0004-2080
DOI: 10.1007/bf02591320